Title: | Tools for Analysing N-Glycan Data |
---|---|
Description: | Useful utilities in N-glycan data analysis. This package tries to fill the gap in N-glycan data analysis by providing easy to use functions for basic operations on data (see <https://en.wikipedia.org/wiki/Glycomics> for more details on Glycomics). At the moment 'glycanr' is mostly oriented to data obtained by UPLC (Ultra Performance Liquid Chromatography) and LCMS (Liquid chromatography–mass spectrometry) analysis of Plasma and IgG glycome. |
Authors: | Ivo Ugrina [aut, cre, cph], Lucija Klaric [aut], Alyce Russell [aut], Frano Vuckovic [aut] |
Maintainer: | Ivo Ugrina <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.4.0 |
Built: | 2025-02-21 03:45:17 UTC |
Source: | https://github.com/iugrina/glycanr |
Returns outliers within every glycan structure
glyco.outliers(data, group = NULL, outlier.function = NULL, alpha = 1.5)
glyco.outliers(data, group = NULL, outlier.function = NULL, alpha = 1.5)
data |
data frame in long format containing glycan measurements |
group |
a possible grouping parameter on which
stratification of |
outlier.function |
a function that checks for outliers in a vector. Receives one parameter representing a vector and returns logical vector indicating outliers. |
alpha |
If outlier.function parameter is set to NULL outliers are calculated as those points that are greater than upper quartile + alpha * IQR (interquartile range) or lower than lower quartile - alpha * IQR (interquartile range). If parameter outlier.function is not NULL parameter alpha is not used. |
Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
Returns a data.frame with outliers
Ivo Ugrina
data(mpiu) glyco.outliers(mpiu) # outliers per plate glyco.outliers(mpiu, group="Plate")
data(mpiu) glyco.outliers(mpiu) # outliers per plate glyco.outliers(mpiu, group="Plate")
This function constructs standard plots in exploratory analysis of N-Glycans.
glyco.plot( data, collapse = TRUE, violin = FALSE, group = NULL, all = TRUE, p.adjust.method = "holm", print.p.values = TRUE, log.transform = FALSE, glyco.names = NULL )
glyco.plot( data, collapse = TRUE, violin = FALSE, group = NULL, all = TRUE, p.adjust.method = "holm", print.p.values = TRUE, log.transform = FALSE, glyco.names = NULL )
data |
data frame which holds columns representing Glycans. These column names must start with 'GP'. |
collapse |
should Glycans be presented in one facet (default) or with more facets (one per Glycan). |
violin |
should Glycans be presented in a boxplot (default) or violin format. |
group |
this a possible grouping parameter on which
stratification of |
all |
should all of the variables (default) be presented in the plot
or only those that have significant p-values. This variable is
meaningful only when |
p.adjust.method |
method used for adjustment of p-values to multiple
testing. Variable p.adjust.method must be an element of
|
print.p.values |
should p-values be printed on plots |
log.transform |
should Glycans be log transform prior to plotting. |
glyco.names |
names of columns that represent glycan data. If |
Returns a list consisting of p-values, adjusted p-vales and the plot.
Ivo Ugrina
devAskNewPage(TRUE) exampleData <- data.frame(ID=1:100, GP1=runif(100), GP2=rexp(100,0.2), GP3=rgamma(100, 3), Plate=factor(sample(1:2,100,replace=TRUE))) glyco.plot(exampleData) glyco.plot(exampleData, group='Plate', collapse=FALSE, log=TRUE)
devAskNewPage(TRUE) exampleData <- data.frame(ID=1:100, GP1=runif(100), GP2=rexp(100,0.2), GP3=rgamma(100, 3), Plate=factor(sample(1:2,100,replace=TRUE))) glyco.plot(exampleData) glyco.plot(exampleData, group='Plate', collapse=FALSE, log=TRUE)
Calculates values of derived traits for Glycan peaks in IgG for LCMS
ildt(data = NULL, method = "2014", print.exp.names = FALSE)
ildt(data = NULL, method = "2014", print.exp.names = FALSE)
data |
data frame that holds columns representing Glycans. |
method |
year of the derived traits definition. By default 2014. |
print.exp.names |
If |
Calculates derived traits from basic glycan peaks. User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).
Returns the data frame with derived traits
Ivo Ugrina
Jennifer E. Huffman et al. (2014) "Comparative Performance of Four Methods for High-throughput Glycosylation Analysis of Immunoglobulin G in Genetic and Epidemiological Research*" doi:10.1074/mcp.M113.037465
Translates names between computer readable and human readable for derived traits of IgG with LCMS
ildt.translate(orignames, to = "inverse", method = "2014")
ildt.translate(orignames, to = "inverse", method = "2014")
orignames |
vector; type string |
to |
type of translation. If |
method |
year of the derived traits definition. By default 2014. |
User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).
Returns a character vector with original and translated names
Ivo Ugrina
Jennifer E. Huffman et al. (2014) "Comparative Performance of Four Methods for High-throughput Glycosylation Analysis of Immunoglobulin G in Genetic and Epidemiological Research*" doi:10.1074/mcp.M113.037465
Calculates values of derived traits for Glycan peaks in IgG for UPLC
iudt(data = NULL, method = "2014", print.exp.names = FALSE)
iudt(data = NULL, method = "2014", print.exp.names = FALSE)
data |
data frame that holds columns representing Glycans. These column names should start with 'GP'. |
method |
year of the derived traits definition. By default 2014. |
print.exp.names |
If |
Calculates derived traits from basic glycan peaks. User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).
Returns the data frame with derived traits
Ivo Ugrina, Frano Vučković
Jennifer E. Huffman et al. (2014) "Comparative Performance of Four Methods for High-throughput Glycosylation Analysis of Immunoglobulin G in Genetic and Epidemiological Research*" doi:10.1074/mcp.M113.037465
Translates names between computer readable and human readable for derived traits of IgG with UPLC
iudt.translate(orignames, to = "inverse", method = "2014")
iudt.translate(orignames, to = "inverse", method = "2014")
orignames |
vector; type string |
to |
type of translation. If |
method |
year of the derived traits definition. By default 2014. |
User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).
Returns a character vector with original and translated names
Ivo Ugrina
Jennifer E. Huffman et al. (2014) "Comparative Performance of Four Methods for High-throughput Glycosylation Analysis of Immunoglobulin G in Genetic and Epidemiological Research*" doi:10.1074/mcp.M113.037465
Returns glycans normalized with Median Normalization approach.
mediannorm(d, grouping = FALSE)
mediannorm(d, grouping = FALSE)
d |
data frame in long format containing glycan measurements |
grouping |
should data be normalized per groups |
Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE
it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)
Returns a data.frame with original glycan values substituted by normalized ones
Ivo Ugrina, Lucija Klarić
data(mpiu) mpiun <- mediannorm(mpiu) head(mpiun)
data(mpiu) mpiun <- mediannorm(mpiu) head(mpiun)
Returns glycans normalized with Median Quotient Normalization approach.
medianquotientnorm(d, grouping = FALSE)
medianquotientnorm(d, grouping = FALSE)
d |
data frame in long format containing glycan measurements |
grouping |
should data be normalized per groups |
Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE
it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)
Returns a data.frame with original glycan values substituted by normalized ones
Ivo Ugrina, Lucija Klarić
Dieterle F,Ross A, Schlotterbeck G, Senn H.:
Probabilistic Quotient Normalization as Robust Method to Account for
Diluition of Complex Biological Mixtures. Application in 1H NMR Metabolomics.
Anal Chem 2006;78:4281-90.
doi:10.1021/ac051632c
data(mpiu) mpiun <- medianquotientnorm(mpiu) head(mpiun)
data(mpiu) mpiun <- medianquotientnorm(mpiu) head(mpiun)
This is an example of the data obtained by UPLC while analysing IgG.
mpiu
mpiu
An object of class data.frame
with 13680 rows and 4 columns.
This is an example of the normalized mpiu data. It is intended to be used for unit tests.
mpiunorm
mpiunorm
An object of class data.frame
with 68400 rows and 5 columns.
Calculates values of derived traits for Glycan peaks in Plasma for HPLC
phdt(data = NULL, method = "2011", print.exp.names = FALSE)
phdt(data = NULL, method = "2011", print.exp.names = FALSE)
data |
data frame that holds columns representing Glycans. These column names should start with 'GP'. |
method |
year of the derived traits definition. By default 2011. |
print.exp.names |
If |
Calculates derived traits from basic glycan peaks. User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).
Returns the data frame with derived traits
Ivo Ugrina, Lucija Klarić
Lu et al. (2011) "Screening Novel Biomarkers for Metabolic Syndrome by Profiling Human Plasma N-Glycans in Chinese Han and Croatian Populations" doi:10.1021/pr2004067 Irena Trbojevic-Akmacic et al. "Plasma N-glycome composition associates with chronic low back pain" doi:10.1016/j.bbagen.2018.07.003
Returns glycans normalized with Quantile Normalization approach.
quantilenorm(d, grouping = FALSE, transpose = FALSE)
quantilenorm(d, grouping = FALSE, transpose = FALSE)
d |
data frame in long format containing glycan measurements |
grouping |
should data be normalized per groups |
transpose |
transpose the data prior to normalization |
Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE
it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)
Returns a data.frame with original glycan values substituted by normalized ones
Ivo Ugrina, Lucija Klarić
Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P.:
A Comparison of Normalization Methods for High Density Oligonucleotide
Array Data Based on Bias and Variance.
Bioinformatics 19(2), p. 185-193, 2003.
doi:10.1093/bioinformatics/19.2.185
data(mpiu) if(requireNamespace("preprocessCore", quietly=TRUE)){ mpiun <- quantilenorm(mpiu) head(mpiun) # transpose (change) subjects and measurements mpiunt <- quantilenorm(mpiu, transpose=TRUE) head(mpiunt) }
data(mpiu) if(requireNamespace("preprocessCore", quietly=TRUE)){ mpiun <- quantilenorm(mpiu) head(mpiun) # transpose (change) subjects and measurements mpiunt <- quantilenorm(mpiu, transpose=TRUE) head(mpiunt) }
Returns glycans normalized with Reference Peak Normalization approach.
refpeaknorm(d, grouping = FALSE, peak = NULL)
refpeaknorm(d, grouping = FALSE, peak = NULL)
d |
data frame in long format containing glycan measurements |
grouping |
should data be normalized per groups |
peak |
glycan name to use as the reference peak. If |
Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE
it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)
Returns a data.frame with original glycan values substituted by normalized ones
Ivo Ugrina, Lucija Klarić
data(mpiu) mpiun <- refpeaknorm(mpiu) head(mpiun)
data(mpiu) mpiun <- refpeaknorm(mpiu) head(mpiun)
Returns glycans normalized with Total Area Normalization approach.
tanorm(d, grouping = FALSE)
tanorm(d, grouping = FALSE)
d |
data frame in long format containing glycan measurements |
grouping |
should data be normalized per groups |
Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE
it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)
Returns a data.frame with original glycan values substituted by normalized ones
Ivo Ugrina
data(mpiu) mpiun <- tanorm(mpiu) head(mpiun)
data(mpiu) mpiun <- tanorm(mpiu) head(mpiun)